1. (a) $\frac{\mathrm{d}}{\mathrm{d} x} \ln x=\frac{1}{x}, \frac{\mathrm{~d}}{\mathrm{~d} x} x^{2}=2 x$ (seen anywhere)
attempt to substitute into the quotient rule (do not accept product rule)
e.g. $\frac{x^{2}\left(\frac{1}{x}\right)-2 x \ln x}{x^{4}}$
correct manipulation that clearly leads to result
A1
e.g. $\frac{x-2 x \ln x}{x^{4}}, \frac{x(1-2 \ln x)}{x^{4}}, \frac{x}{x^{4}}-\frac{2 x \ln x}{x^{4}}$
$g^{\prime}(x)=\frac{1-2 \ln x}{x^{3}}$
AG N0
4
(b) evidence of setting the derivative equal to zero
e.g. $g^{\prime}(x)=0,1-2 \ln x=0$
$\ln x=\frac{1}{2}$
$x=\mathrm{e}^{\frac{1}{2}}$
A1 N2 3
2. (a) Attempt to differentiate
$g^{\prime}(x)=3 x^{2}-6 x-9$
for setting derivative equal to zero
$3 x^{2}-6 x-9=0$
Solving
e.g. $3(x-3)(x+1)=0$
$x=3 x=-1$
(b) METHOD 1
$g^{\prime}(x<-1)$ is positive, $g^{\prime}(x>-1)$ is negative
A1A1
$g^{\prime}(x<3)$ is negative, $g^{\prime}(x>3)$ is positive
\min when $x=3$, max when $x=-1$
A1A1 N3

METHOD 2
Evidence of using second derivative
$g^{\prime \prime}(x)=6 x-6$
$g^{\prime \prime}(3)=12$ (or positive), $g^{\prime \prime}(-1)=-12$ (or negative)
\min when $x=3$, max when $x=-1$
A1A1 N2
3. $f^{\prime}(x)=-2 x+3$

$$
\begin{equation*}
f(x)=\frac{-2 x^{2}}{2}+3 x+c \tag{M1}
\end{equation*}
$$

Notes: Award (M1) for an attempt to integrate. Do not penalize the omission of c here.

$$
\begin{align*}
& 1=-1+3+c \tag{A1}\\
& c=-1 \tag{A1}\\
& f(x)=-x^{2}+3 x-1
\end{align*}
$$

(A1) (C4)
4. (a) METHOD 1

$$
f^{\prime \prime}(x)=3(x-3)^{2}
$$

A2 N 2

METHOD 2

attempt to expand $(x-3)^{3}$
e.g. $f^{\prime}(x)=x^{3}-9 x^{2}+27 x-27$
$f^{\prime \prime}(x)=3 x^{2}-18 x+27$
(b) $\quad f^{\prime}(3)=0, f^{\prime \prime}(3)=0$
(c) METHOD 1
$f^{\prime \prime}$ does not change sign at P
R1
evidence for this
R1

METHOD 2

f^{\prime} changes sign at P so P is a maximum/minimum (i.e. not inflexion) evidence for this

R1
R1 N0

METHOD 3

finding $f(x)=\frac{1}{4}(x-3)^{4}+c$ and sketching this function indicating minimum at $x=3$

R1

R1 N0
5. (a)

	A	B	E
$f^{\prime}(x)$	negative	0	negative

(b)

	A	B	E
$f^{\prime \prime}(x)$	positive	positive	negative

A1A1A1 N3
6. (a) $x=4$
(A1)
$g^{\prime \prime}$ changes sign at $x=4$ or concavity changes
(b) $x=2$

EITHER

g^{\prime} goes from negative to positive
OR
$g^{\prime}(2)=0$ and $g^{\prime \prime}(2)$ is positive
(R1) 2
(c)

(A2)(A1)(A1) 4
Note: Award (A2) for a suitable cubic curve through (4, 0), (A1) for M at $x=2$, (A1) for P at (4, 0).
7. (a) METHOD 1
$f^{\prime}(x)=-6 \sin 2 x+2 \sin x \cos x$
$=-6 \sin 2 x+\sin 2 x$
$=-5 \sin 2 x$
A1A1A1
A1
AG N0

METHOD 2

$\sin ^{2} x=\frac{1-\cos 2 x}{2}$
$f(x)=3 \cos 2 x+\frac{1}{2}-\frac{1}{2} \cos 2 x$
$f(x)=\frac{5}{2} \cos 2 x+\frac{1}{2}$
$f^{\prime}(x)=2\left(\frac{5}{2}\right)(-\sin 2 x)$
$f^{\prime}(x)=-5 \sin 2 x$
(b) $\quad k=\frac{\pi}{2}(=1.57)$
8. (a) $h=3$

$$
k=2
$$

(b) $\quad f(x)=-(x-3)^{2}+2$

$$
\begin{align*}
& =-x^{2}+6 x-9+2 \quad \text { (must be a correct expression) } \tag{A1}\\
& =-x^{2}+6 x-7 \tag{AG}
\end{align*}
$$

(c) $f^{\prime}(x)=-2 x+6$
(d) (i) tangent gradient $=-2$

$$
\begin{equation*}
\text { gradient of } L=\frac{1}{2} \tag{A1}
\end{equation*}
$$

A2 N2
(A1)(N2) 2

(ii) EITHER

equation of L is $y=\frac{1}{2} x+c$

$$
\begin{equation*}
c=-1 \tag{A1}
\end{equation*}
$$

$y=\frac{1}{2} x-1$
OR
$y-1=\frac{1}{2}(x-4)$
(A2) (N2) 2
(iii) EITHER
$-x^{2}+6 x-7=\frac{1}{2} x-1$
$2 x^{2}-11 x+12=0 \quad($ may be implied $)$
$(2 x-3)(x-4)=0 \quad($ may be implied $)$

$$
x=1.5
$$

(A1) (N3) 4
OR
$-x^{2}+6 x-7=\frac{1}{2} x-1($ or a sketch $)$
$x=1.5$
(A3)(N3) 8
9.

Note: Award A2 for correct shape (approximately parabolic),
A1 A1 for intercepts at 0 and 4, A2 for minimum between $x=1.5$ and $x=2.5$.
10. (a) (i) $f(x)=\frac{2 x+1}{x-3}$
$=2+\frac{7}{x-3}$ by division or otherwise
Therefore as $|x| \rightarrow \infty f(x) \rightarrow 2$
$\Rightarrow y=2$ is an asymptote
OR $\lim _{x \rightarrow \infty} \frac{2 x+1}{x-3}=2$
(M1)(A1)
$\Rightarrow y=2$ is an asymptote
OR make x the subject
$y x-3 y=2 x+1$
$x(y-2)=1+3 y$
$x=\frac{1+3 y}{y-2}$
$\Rightarrow y=2$ is an asymptote
Note: Accept inexact methods based on the ratio of the coefficients of x.
(ii) Asymptote at $x=3$
(iii) $\quad P(3,2)$
(b) $f(x)=0 \Rightarrow x=-\frac{1}{2}\left(-\frac{1}{2}, 0\right)$
$x=0 \Rightarrow f(x)=-\frac{1}{3}\left(0,-\frac{1}{3}\right)$
(M1)(A1) 4
Note: These do not have to be in coordinate form.
(c)

Note: Asymptotes (A1)
Intercepts (A1)
"Shape" (A2).
(d) $f^{\prime}(x)=\frac{(x-3)(2)-(2 x+1)}{(x-3)^{2}}$
$=\frac{-7}{(x-3)^{2}}$
$=$ Slope at any point
Therefore slope when $x=4$ is -7
And $f(4)=9 \quad$ ie $S(4,9)$
\Rightarrow Equation of tangent: $y-9=-7(x-4)$
$7 x+y-37=0$
(A1) 6
(e) at $T, \frac{-7}{(x-3)^{2}}=-7$
$\Rightarrow(x-3)^{2}=1$
$x-3= \pm 1$
$x=4$ or $2 \quad S(4,9)$
$y=9$ or -5$\} \quad T(2,-5)$
(A1)(A1) 5
(f) Midpoint $[S T]=\left(\frac{4+2}{2}, \frac{9-5}{2}\right)$
$=(3,2)$
$=$ point P
(A1) 1
11.

A1A1A1A1A1A1 N6
Notes: On interval [-2,0], award A1 for decreasing, Al for concave up.
On interval [0,1], award A1 for increasing, Al for concave up.
On interval [1,2], award A1 for change of concavity, A1 for concave down.
12. $y=x^{3}+1$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}$
$=$ Slope of tangent at any point
Therefore at point where $x=1$, slope $=3$
\Rightarrow Slope of normal $=-\frac{1}{3}$
\Rightarrow Equation of normal: $y-2=-\frac{1}{3}(x-1)$

$$
\begin{align*}
& 3 y-6=-x+1 \\
& x+3 y-7=0 \tag{A1}
\end{align*}
$$

Note: Accept equivalent forms eg $y=-\frac{1}{3} x+2 \frac{1}{3}$
13. evidence of choosing the product rule
$f^{\prime}(x)=\mathrm{e}^{x} \times(-\sin x)+\cos x \times \mathrm{e}^{x}\left(=\mathrm{e}^{x} \cos x-\mathrm{e}^{x} \sin x\right)$
substituting π
e.g. $f^{\prime}(\pi)=\mathrm{e}^{\pi} \cos \pi-\mathrm{e}^{\pi} \sin \pi, \mathrm{e}^{\pi}(-1-0),-\mathrm{e}^{\pi}$
taking negative reciprocal
e.g. $-\frac{1}{f^{\prime}(\pi)}$
gradient is $\frac{1}{e^{\pi}}$
14. (a) (i) $-1.15,1.15$
(ii) recognizing that it occurs at P and Q
e.g. $x=-1.15, x=1.15$
$k=-1.13, k=1.13$

A1A1 N2
(M1)

A1A1 N3
(b) evidence of choosing the product rule
e.g. $u v^{\prime}+v u^{\prime}$
derivative of x^{3} is $3 x^{2}$
derivative of $\ln \left(4-x^{2}\right)$ is $\frac{-2 x}{4-x^{2}}$
correct substitution
e.g. $x^{3} \times \frac{-2 x}{4-x^{2}}+\ln \left(4-x^{2}\right) \times 3 x^{2}$
$g^{\prime}(x)=\frac{-2 x^{4}}{4-x^{2}}+3 x^{2} \ln \left(4-x^{2}\right)$
AG N0
(c)

A1A1 N2
(d) $w=2.69, w<0$

A1A2 N2
15. (a) valid approach
e.g. $f^{\prime \prime}(x)=0$, the max and \min of f^{\prime} gives the points of inflexion on f $-0.114,0.364$ (accept $(-0.114,0.811)$ and $(0.364,2.13))$
(b) METHOD 1
graph of g is a quadratic function
a quadratic function does not have any points of inflexion

METHOD 2

graph of g is concave down over entire domain
R1 N1
therefore no change in concavity

METHOD 3

$$
g^{\prime \prime}(x)=-144
$$

R1 N1

$$
\text { therefore no points of inflexion as } g^{\prime \prime}(x) \neq 0
$$

R1 N1
R1 N1
16. substituting $x=1, y=3$ into $f(x) \quad$ (M1) $3=p+q$
finding derivative
$f^{\prime}(x)=2 p x+q$
correct substitution, $2 p+q=8$
$p=5, q=-2$
17. (a) gradient is 0.6

A2 N 2
(b) at R, $y=0$ (seen anywhere) at $x=2, y=\ln 5(=1.609 \ldots)$
evidence of finding correct equation of normal
e.g. $y-\ln 5=-\frac{5}{3}(x-2), y=-1.67 x+c$
$x=2.97$ (accept 2.96)
A1
coordinates of R are $(2.97,0) \mathrm{N} 3$

18. (a) EITHER

Recognizing that tangents parallel to the x-axis mean maximum and minimum (may be seen on sketch)
Sketch of graph of f

OR
Evidence of using $f^{\prime}(x)=0$
Finding $f^{\prime}(x)=3 x^{2}-6 x-24$
$3 x^{2}-6 x-24=0$
Solutions $x=-2 \quad$ or $\quad x=4$

THEN

Coordinates are $\mathrm{P}(-2,29)$ and $\mathrm{Q}(4,-79)$
(b)

(i) $(4,29)$

A1 N1
(ii) $(-2,-79)$

A1 N1
19. (a) (i) $x=-\frac{5}{2}$
(A1)
(ii) $y=\frac{3}{2}$
(A1) 2
(b) By quotient rule
(M1)

$$
\begin{align*}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(2 x+5)(3)-(3 x-2)(2)}{(2 x+5)^{2}} \tag{A1}\\
& =\frac{19}{(2 x+5)^{2}} \tag{A1}
\end{align*}
$$

(c) There are no points of inflexion.
(A1) 1
20. METHOD 1

Using gdc coordinates of maximum are (0.667, 26.9)
(G3)(G3) (C6)

METHOD 2

At maximum $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-20 x+12=0=(3 x-2)(x-6)$
(M1)(A1)(M1)
$\Rightarrow x=\frac{2}{3}$ must be where maximum occurs
$x=\frac{2}{3} \Rightarrow>y=\left(\frac{2}{3}\right)^{3}-10\left(\frac{2}{3}\right)^{2}+12\left(\frac{2}{3}\right)+23=\frac{725}{27}(=26.9,3 \mathrm{sf}) \quad(\mathrm{M} 1)(\mathrm{A} 1)$
Maximum at $\left(\frac{2}{3}, \frac{725}{27}\right)$
(C4)(C2)
21. $y=\sin (2 x-1)$

$$
\begin{align*}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \cos (2 x-1) \tag{A1}\\
& \text { At }\left(\frac{1}{2}, 0\right) \text {, the gradient of the tangent }=2 \cos 0 \tag{A1}
\end{align*}
$$

$$
\begin{equation*}
=2 \tag{A1}
\end{equation*}
$$

22.

(a) $f(1)=3$
$f(5)=3$
(A1)(A1) 2
(b) EITHER distance between successive maxima $=$ period

$$
\begin{align*}
& =5-1 \tag{M1}\\
& =4 \tag{A1}
\end{align*}
$$

(AG)

$$
\begin{aligned}
& \text { OR } \quad \text { Period of } \sin k x=\frac{2 \pi}{k} \\
& \text { so period }=\frac{2 \pi}{\frac{\pi}{2}} \\
& =4
\end{aligned}
$$

(c) EITHER $A \sin \left(\frac{\pi}{2}\right)+B=3$ and $A \sin \left(\frac{3 \pi}{2}\right)+B=-1$

$$
\begin{align*}
& \Leftrightarrow A+B=3,-A+B=-1 \tag{A1}\\
& \Leftrightarrow A=2, B=1
\end{align*}
$$

$$
\text { OR Amplitude }=A
$$

$$
\begin{align*}
& A=\frac{3-(-1)}{2}=\frac{4}{2} \tag{M1}\\
& A=2 \tag{AG}
\end{align*}
$$

Midpoint value $=B$

$$
\begin{align*}
& B=\frac{3+(-1)}{2}=\frac{2}{2} \tag{M1}\\
& B=1 \tag{A1}
\end{align*}
$$

Note: As the values of $A=2$ and $B=1$ are likely to be quite obvious to a bright student, do not insist on too detailed a proof.
(d) $\quad f(x)=2 \sin \left(\frac{\pi}{2} x\right)+1$

$$
\begin{equation*}
f^{\prime}(x)=\left(\frac{\pi}{2}\right) 2 \cos \left(\frac{\pi}{2} x\right)+0 \tag{M1}
\end{equation*}
$$

Note: Award (M1) for the chain rule, (A1) for $\left(\frac{\pi}{2}\right)$, (A1) for $2 \cos \left(\frac{\pi}{2} x\right)$.

$$
\begin{equation*}
=\pi \cos \left(\frac{\pi}{2} x\right) \tag{A1}
\end{equation*}
$$

Notes: Since the result is given, make sure that reasoning is valid. In particular, the final (A1) is for simplifying the result of the chain rule calculation. If the preceding steps are not valid, this final mark should not be given. Beware of "fudged" results.
(e) (i) $y=k-\pi x$ is a tangent $\Rightarrow-\pi=\pi \cos \left(\frac{\pi}{2} x\right)$

$$
\begin{align*}
& \Rightarrow-1=\cos \left(\frac{\pi}{2} x\right) \tag{A1}\\
& \Rightarrow \frac{\pi}{2} x=\pi \text { or } 3 \pi \text { or } \ldots \\
& \Rightarrow x=2 \text { or } 6 \ldots \tag{A1}
\end{align*}
$$

Since $0 \leq x \leq 5$, we take $x=2$, so the point is $(2,1)$
(ii) Tangent line is: $y=-\pi(x-2)+1$

$$
\begin{align*}
& y=(2 \pi+1)-\pi x \tag{M1}\\
& k=2 \pi+1 \tag{A1}
\end{align*}
$$

(f) $\quad f(x)=2 \Rightarrow 2 \sin \left(\frac{\pi}{2} x\right)+1=2$

$$
\begin{equation*}
\Rightarrow \sin \left(\frac{\pi}{2} x\right)=\frac{1}{2} \tag{A1}
\end{equation*}
$$

$\Rightarrow \frac{\pi}{2} x=\frac{\pi}{6}$ or $\frac{5 \pi}{6}$ or $\frac{13 \pi}{6}$
$x=\frac{1}{3}$ or $\frac{5}{3}$ or $\frac{13}{3}$
23. $y=x^{2}-x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-1=$ gradient at any point.
Line parallel to $y=5 x$
$\Rightarrow 2 x-1=5$
$x=3$
$y=6$
D

$$
\begin{equation*}
\text { Point }(3,6) \tag{A1}
\end{equation*}
$$

